Meet Jonathan
Hometown: Sugar Land, TX
Why Cornell?
I knew that I wanted to be challenged in all aspects of my scholarship. I chose Cornell because of the well-established engineering program and emphasis on learning inside and outside of the classroom. The amazing project teams, distinguished faculty, and gorgeous scenery of Ithaca drew me to Cornell.
Why biomedical engineering (BME)?
I’ve always been fascinated with the intersection of engineering principles and biology stemming from my curiosity of modern medicine. I chose BME because the field blends my interests to help improve human health. I think the most interesting aspect of BME is the ability to use computational methods to predict cellular/molecular patterns.
How did you decide on your BME concentration Molecular/Cellular/Systems Engineering (MCSE)?
After taking BME 1310, Intro to Biomedical Engineering, I was fascinated with the intricacies of the wet lab experiments. I chose the MCSE concentration because I wanted to learn more about how cells and molecules interact. I also wanted to gain a computational foundation to learn how to model biological problems.
What are some of the most important skills or lessons you’ve learned while pursuing this major?
I’ve learned to always be open to learning. The BME coursework, representative of the entire field, is quite diverse and requires learning new skills that are not already in your skill set. Being open to learning allows you to grow in ways you wouldn’t think were possible!
Any interests outside your scholarship?
Outside of the classroom, I am currently the Vice President of the Cornell Biomedical Engineering Society and a member of Theta Tau. As a member of the Cornell University Biomedical Device project team, I am designing a watch-like wearable device used for monitoring multiple sclerosis progression. The device would monitor a user’s muscle mobility, motor skills, and balance. To do so, it employs the use of different sensors that would track electrical neuromuscular activity based on different motor stimuli. This project allows me to further develop my biomedical instrumentation knowledge learned in my classes, while applying the real world aspects of device design and user considerations.
These experiences have shaped my Cornell experience by providing me with a community of biomedical engineers, hands-on experience with the design process of medical devices, and the development of my professional skills. I have also enjoyed helping incoming students into the major through my experiences as a TA for BME 1310 and BME 2010.
Last Summer, I was an Engineering Intern at Medtronic, within their Active Implantables and Pumps subdivision, where I worked on the manufacturing side of medical device changes. In previous summers, I helped co-organize a Model UN conference in China, with the Cornell International Affairs Society, and built a website consolidating information about covid-19 during the Cleveland Clinic and Case Western Reserve University virtual internship.
Apart from engineering, I am interested in photography, baking, and website building.
What stands out to you about your Cornell BME experience so far and why?
I will cherish BME 3030, Measurement and Instrumentation in Biomedical Engineering, because the hands-on labs provided me with a foundational understanding of circuits and sensors to detect biological phenomena. The class was a rewarding experience as it allowed me to replicate an established standard for detecting heart/respiratory rate. With all of the skills learned from the BME coursework, I plan to complete a wearable device, with my design group, for the BME Senior Design class!
What’s next for you?
After graduation, I will be working full-time at Medtronic as a Sourcing Engineer within the Active Implantables and Pumps subdivision. My time at Cornell and my internship allowed me to explore my passion for medical devices and helping people through biomedical engineering. In the future, I hope to create accessible medical devices that have a real-world, positive impact on human health.