Yi Wang
Director of MRI Research Institute Radiology, Weill Cornell Medicine
The Faculty Distinguished Professor
Biomedical Engineering
Biography
Major research interests in Prof. Yi Wang’s lab are in applying and developing data science, machine learning, optimization, physics, and statistical inference techniques for medical imaging acquisition and analysis. This includes increasing imaging speed, reducing image artifacts, and generating novel image contrasts/biomarkers using computer vision and signal processing strategies. We seek to formulate medical imaging problems for disease diagnosis and therapy delivery as inverse problems from acquired signals to underlying pathogeneses based on biophysics. We work closely with clinicians to study neurological diseases such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, stroke, cancer in various organs, liver diseases, and heart diseases. The inverse problems are often poorly conditioned and involve noisy incomplete data, resulting in reconstructed images with errors or artifacts commonly encountered in computer vision. We have developed the Bayesian statistical inference approach to removing image artifacts in MRI using prior knowledge established in biomedicine or acquired from multiple imaging modalities including immunohistochemical staining and optical imaging.
Our work is exemplified in the following:
- Quantitative susceptibility mapping (QSM) to solve the field-to-susceptibility inverse problem using the Bayesian approach. Tissue susceptibility reflects molecular electron cloud properties and QSM enables its precise quantitative study. QSM has become a very active field of studying tissue magnetism for applications in neurodegeneration, inflammation, oxygen consumption, hemorrhage, liver, osteoporosis, atherosclerosis, and drug delivery. QSM is increasingly used in clinical practice, particularly in precision targeting for deep brain stimulation, precision monitoring of chronic active hemorrhages and inflammation, precision medication for iron chelation therapy, and precision diagnosis and gadolinium-free imaging for multiple sclerosis.
- Quantitative transport mapping (QTM) to solve the inverse problem from imaging to tissue perfusion quantification. We develop fast dynamic imaging (4D) to capture tracer (drugs, contrast agents and spin labels) transport in tissue using super resolution, sparsity, and deep learning techniques. Perfusion parameters affect imaging through convolution in space time according to transport equation of mass and momentum flux laws. We develop QTM to deconvolve 4D time resolved imaging for perfusion quantification. QTM enables precise measurement of blood flow in tissue and helps with precise delivery of therapeutic drugs, cryotherapy and tissue ablation.
- Lesion segmentation from acquired images to enable automated precise measurements and analyses of disease burden. We employ various image segmentation techniques including image feature based approaches and deep neural network based approaches.
For students interested in PhD projects at Prof. Wang’s lab, the following video provides additional information including a brief overview of recent theses:
Research Interests
- Biomedical Imaging and Instrumentation
- Bioengineering
- Biomedical Engineering
- Image Analysis
- Signal and Image Processing
- Scientific Computing
- Biomolecular Engineering
- Algorithms
- Artificial Intelligence
- Biophysics
- Biotechnology
- Computational Fluid Dynamics
- Complex Systems, Network Science and Computation
- Computational Science and Engineering
- Computer Aided Diagnosis
- Neuroscience
- Statistics and Machine Learning
Teaching Interests
Principles of medical imaging, Magnetic Resonance Imaging (MRI)
Selected Publications
- Quantitative transport mapping (QTM) for differentiating benign and malignant breast lesion: Comparison with traditional kinetics modeling and semi-quantitative enhancement curve characteristics.
Zhang Q, Spincemaille P, Drotman M, Chen C, Eskreis-Winkler S, Huang W, Zhou L, Morgan J, Nguyen TD, Prince MR, Wang Y. Magn Reson Imaging. 2022 Feb;86:86-93. doi: 10.1016/j.mri.2021.10.039. Epub 2021 Nov 6.PMID: 34748928 - The central vein sign in multiple sclerosis lesions: Susceptibility relaxation optimization from a routine MRI multiecho gradient echo sequence.
Li J, Huang W, Luo X, Wen Y, Cho J, Kovanlikaya I, Gauthier SA, Nguyen TD, Spincemaille P, Wang Y.J Neuroimaging. 2021 Oct 19. doi: 10.1111/jon.12938. Online ahead of print. PMID: 34664747 - Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction.
Zhang J, Liu Z, Zhang S, Zhang H, Spincemaille P, Nguyen TD, Sabuncu MR, Wang Y. Neuroimage. 2020 May 1;211:116579. doi: 10.1016/j.neuroimage.2020.116579. Epub 2020 Jan 22.PMID: 31981779 - Multiecho complex total field inversion method (mcTFI) for improved signal modeling in quantitative susceptibility mapping.
Wen Y, Spincemaille P, Nguyen T, Cho J, Kovanlikaya I, Anderson J, Wu G, Yang B, Fung M, Li K, Kelley D, Benhamo N, Wang Y. Magn Reson Med. 2021 Oct;86(4):2165-2178. doi: 10.1002/mrm.28814. Epub 2021 May 24.PMID: 34028868 - QQ-NET – using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM+qBOLD or QQ) based oxygen extraction fraction (OEF) mapping.
Cho J, Zhang J, Spincemaille P, Zhang H, Hubertus S, Wen Y, Jafari R, Zhang S, Nguyen TD, Dimov AV, Gupta A, Wang Y.Magn Reson Med. 2021 Oct 31. doi: 10.1002/mrm.29057. Online ahead of print. PMID: 34719059 - Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training.
Jafari R, Spincemaille P, Zhang J, Nguyen TD, Luo X, Cho J, Margolis D, Prince MR, Wang Y.Magn Reson Med. 2021 Apr;85(4):2263-2277. doi: 10.1002/mrm.28546. Epub 2020 Oct 26.PMID: 33107127
Selected Awards and Honors
- Fellow of American Institute for Medical and Biological Engineering (AIMBE) 2006
- Fellow (International Society of Magnetic Resonance in Medicine) 2012
- Fellow (Institute of Electrical and Electronics Engineers) 2013
- Advanced Richard B. Mazess Scholarship (University of Wisconsin) 1993
- Graduate Fellowship (University of Wisconsin) 1988
Education
- B.S. (Nuclear Physics), Fudan University, 1986
- M.S. (Theoretical Physics), University of Wisconsin, Milwaukee, 1988
- Ph.D. (Medical Physics), University of Wisconsin, Madison, 1994
- Postdoc, Mayo Clinic, 1994-1996